
AD-AOa5 593 SOUJTHERN METHODIST UNIV DALLAS TEX DEPT OF STATISTICS F/G 12/1
THE INFLUENCE CURVE AND GODNESS OF FIT,(U)
MAY 80 J R MICHAEL. W R SCHUCANY NOOO14-7S-C.OA39

UNCLASSIFIED TR-137 NLEhrmmiiiniiiniu
IIIIIIIIIIIhhlE



THE INFLUENCE CURVE AND GOODNESS OF FIT

by

John R. Michael
William R. Schucany

Technical Report No. 137
Department of Statistics ONR Contract

May 9, 1980

Research Sponsored by the Office of Naval Research
Contract N00014-75-C-0439

Project NR 042-280

Reproduction in whole or in part is permittedfor any purpose of the United States Governmtent .i-

This document has been approved for public release
and sale; its distribution is unlimited

DIVISION OF MATHEMATICAL SCIENCES
Department of Statistics

Southern Methodist University
Dallas, Texas 75275



THE INFLUENCE CURVE AND GOODNESS OF FIT

John R. Michael William R. Schucany
Bell Laboratories Southern Methodist University

Holmdel, New Jersey 07733 Dallas, Texas 75275

SUMMARY

The influence curve introduced by Hampel (1968) is applied to

goodness-of-fit statistics. The efficacy curve is then defined to be

the square of influence curve weighted by a constant which arises in the

context of approximate Bahadur efficiency. For a number of goodness-of-

fit statistics the ratios of these curves are shown to be equal to the

asymptotic relative efficiency in the Pitman sense when testing for

point contamination. These efficacy curves graphically demonstrate the

sensitivities of certain goodness-of-fit statistics to minor perturba-

tions in the assumed distribution.
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1. THE INFLUENCE CURVE

The influence curve (IC) is introduced by Hampel (1968) as a tool

in the study of the robustness of certain estimators of a location

parameter, say e. The basic idea is to first perturb the assumed dis-

tribution by mixing it with another distribution degenerate at the point

(e+c). This model then quantifies point contamination and, more

importantly, approximates in a mathematically tractable fashion a minor

irregularity in the assumed distribution or contamination by another

distribution which has a relatively small variance. The IC then measures

the asymptotic rate of change of the estimator as contamination is intro-

duced, that is, it measures the influence on the estimator by a relatively

small amount of contamination.

Let F be a cumulative distribution function (CDF) and let Fn denote

the familiar empirical distribution function (EDF) which, for any

argument x, is defined to be the proportion of a random sample that is

less than or equal to x. Many statistics can be written as functionals

of Fn , say T(F n ). If we are sampling from F and we view T(P n ) as an

estimator for the parameter e, then T(Fn ) is said to be Fisher consistent

if e - T(F). Since Fn -* F uniformly with probability one then in many

cases, though not all, T(F) T(F) in probability.

Now let 6c be the CDF which is degenerate at the point c and

denote the mixture of F and 6 by Fe -(l- +)F + c" where e is the

mixing proportion. The influence curve of T at F is defined pointwise

by

T(F ) - T(F)
ICTF(c) - lim ,

6+,0



3

if this limit is defined for every point c. We will omit the subscript

F and write IC T(C) since the form of F will be understood from the context.

In most cases IC T(C) - lim {T'(F )}, where T'(F ) is the first derivative

of T(F ) with respect Jo e.

Hampel (1974) suggests that the IC for an estimator be sketched,

examined, and considered along with other qualitative information about the

estimator such as the form and variance of its asymptotic distribution. In

the setting of robust estimation, it is undesirable for a small amount of

contamination to have a large effect on the value of the estimator. In terms

of the IC, large absolute values are undesirable. If goodness-of-fit sta-

tistics are considered, the interpretation of the IC must be reversed.

2. INFLUENCE CURVES FOR EDF STATISTICS

It is a natural step to construct ICs for goodness-of-fit statistics

in hopes of shedding some light on the sensitivities of these statistics to

perturbations at different points of the assumed distribution. In this

setting it is desirable for a small amount of contamination to have a large

effect on the value of the statistic. In terms of the IC, large values are

desirable.

In this section we will consider the case of a simple null hypothesis,

that is, the hypothesized distribution F is completely specified and con-

tains no unknown parameters. If F is continuous, we can employ the prob-

ability integral transformation on the sample data and equivalently test

the hypothesis of uniformity on the unit interval.

The so-called EDP statistics discussed by Stephens (1974) are form-

ulated naturally as functionals of F . The five EDF statistics that will be

considered here are:
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1. The Kolmogorov-Smirnov statistic D:

D - supx X Fn (X) - F (X)

2. The Kuiper statistic V:

V - supx {Fn (X) - F(x)} + supx {F(x) - F (X)}-

3. The Cramdr-von Mises statistic W2:

W2 a n f {Fn(x) - F (x)12 dF(x).

4. The Watson statistic U2 -

U2 = n f (Fn(x) - F( - f {Fn (s) F(s)}dF(s)] 2 dF(x).

5. The Anderson-Darling statistic A2

n (F n (x) - F(x) } 2

A 2- n dF(x)

F (x)'(l - F (x)

The ICs for D and V can be derived in a straightforward manner.

But V 2, U 2, and A2 all have nondegenerate limiting distributions under

the null hypothesis. In order to obtain ZCs we are led to define the

statistics W* - (W2/n) , U* - (U2/n)h, and A* - (A 2/n) without dividing

by n the original statistics are not functionals of F ; without the square

root the ICs are identically zero and the functionals are not standard

sequences an defined by Bahadur (1960). The relevance of this latter point

will become clear in the next section.

For all five of these WDF statistics T(F) = 0. Replacing F with F

in their definitions the ICs are found to be:



1. IC (c)- IF(c) +
D 21 2'

3. IC. (C) - F2 (c) - F(c) +

4. ICU (c) - (1).

5. ICA* (c) - (- tn[F(c){1 - F(c))] - 1)

Discussion of the shapes of these ICs will be postponed until

Section 4; however, we will note here that the relative magnitudes of

these ICs have little meaning. This becomes obvious when we consider

what happens if we define, say, D* - 2 - D. The test based on D* is

equivalent to the test based on D, but ICD*(c) - 2 • ICD(c). This

difficulty is not encountered for estimators when each is constrained

to be consistent. Another complicating factor when making comparisons

is the fact that different goodness-of-fit statistics often have

asymptotic distributions of different forms. Both of these difficulties

can be resolved by relating the ratios of ICs to Pitman efficiency.

3. RELATIONSHIP TO MEASURES OF EFFICIENCY

In this section it is demonstrated that the ratio of ICs can have

a relationship to the Pitman efficiency (PE) of the corresponding sta-

tistics. See Kendall and Stuart (1979) for a general discussion of PE.

If the asymptotic distributions of the two statistics to be compared are

of different forms, then it is still possible to obtain the PE as the

limit of the approximate Bahadur efficiency (ABE) which is introduced by

nahadur (1960). Emphasis will not be placed on the regularity conditions
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under which the IC can be related to PE, rather the validity of this

relationship will be argued on a case by case basis.

Both PE and ABE are asymptotic measures and are defined in the

context of testing the hypothesis H 0: = (3 for some 0 0 e against

the alternative HA: 0 E Q . We can fit the contamination alternativeA A

into this framework by assuming that F = (I-e)F + e6 is the CDF of the£ c

underlying distribution, letting E = e, S = {Go = {0}, A = (0,1), and

testing the null hypothesis H : = 0 against the alternative hypothesis

HA: 0 < e < 1. Here H corresponds to the hypothesis that F F where

F is some completely specified CDF.

In many cases the asymptotic distributions of two goodness-of-fit

statistics to be compared are of different forms. Bahadur (1960) pro-

poses a measure of efficiency which takes this difference into account.

Bahadur defines {n Tn} to be a standard sequence if the following three

conditions are met:

Condition I: There exists a continuous CDF G*

such that for each 0 4 Q
0

lim P e(n Tn < x) = G*(x), for every x.

Condition II: There exists a constant a e (0,-) such

that, as X -0 ,
2

In rl.G~ill axIn [1-G*(x}] - [1+o(1)].2

Condition III: There exists a function b on fA with

0 4 b(G) < - such that for each e e aA'

T * b(0), in probability.
n

-r--
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The approximate slope of {n T n  is defined to be s(G) = ab2 () and the

approximate Bahadur efficiency of TI,n relative to T2, n is defined to be

sI (0) albI2 (0)

ABE 1 2 ( = S2 (0) a b2 (()

where the subscript convention should be obvious.

Whereas PE is a measure of local efficiency, i.e., as ( - eo , ABE

is more general in that it depends upon a particular non-null value of

0. While PE yields a single number, ABE can vary over different values

of (3 Q A For this reason we will occasionally write ABE(9). Although

more general, ABE has an approximate sample size interpretation while

PE has an exact sample size interpretation.

It is reassuring that in most cases lir ABE(() = PE. Bahadur

(1960) discusses the case in which both n TI,n and vn T2,n have

limiting normal distributions. Wieand (1976) does not place this re-

striction on the statistics but requires that each satisfy certain other

conditions. The major condition, which Wieand terms Condition III*, is

stronger than Bahadur's Condition III. Denote by B the interval

( ,(8+*) for one-sided alternatives and the interval (0 9e*O o+(*)
000

with (3 deleted in the two-sided case. Wieand defines Condition III* as

follows:

Condition III*: For the standard sequence {/n T I there

is a 0* > 0 such that for every £ > 0

and 6 * (0,1) there is a y such that for

2all 0 E B and n > (y/b (()] we have

P {IT -b(c3l < s bO)} > 1-6.



Wieand's main theorem states that when two statistics satisfy Condition III*,

and certain other minor conditions, then lim ABE(G) = PE.

Using this result, PEs can be obtained where never before possible.

In particular Wieand shows that the goodness-of-fit statistics D, V, W*,

and U* all satisfy his theorem when the underlying distribution is con-

tinuous. Since F is discontinuous, we must argue that Wieand's theoremC

can be extended to the contamination alternative. When F is continuous

the verification of Condition III* for each EDF statistic makes use of

the fact that the CDF of Z - /n Sup IFn-FI, say Kn (z), does not depend

on F. When F is discontinuous this is no longer true and so for a

particular F the CDF of Z, say K'(z), depends on F. It is known,
n

however, that K'(z) > K (z) for every z (e.g. see Darling, 1957). This

implies that F converges to F faster, and hence that T converges ton n

b(G) faster, when F is discontinuous. Condition III* requires only that

T converge to b(O) within a specified rate. Since D, V, W*, and U* alln

satisfy Condition III* when F is continuous, they must also satisfy

Condition III* when F is discontinuous.

The statistic A* can also be included. The characteristic func-

tion for A2 is derived by Anderson and Darling (1952). It then follows

from Theorem 5.3 of Abrahamson (1965) that the constant "a" in Bahadur's

Condition II is equal to 2 for A*. The verification of Condition III*

for A* parallels that for W* in Wieand (1976).

With the contamination alternative an entire family of alternative

distributions, parameterized by e, is defined for each value of c. The

PEs obtained below will depend in general on the path taken as F F,
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that is, on the particular value of c. To make clear this dependence

on c we will write PE(c).

Using the relations b(e) and T(F and T(F) = 0 which hold for the

EDF statistics being considered, then for any pair of these statistics

PEs can be obtained from ABEs as
2

a T1 (F)
PE(c) = lim ABE(e) = - lir1

C+0 a2  £+ T 2(F)

2

a IC1 (c)

a2 IC 2 (c)

Thus we see that the ratios of the squares of ICs, when properly weighted,

can have a PE interpretation. More specifically, PE here is the limit

as n - and e + 0 of the ratio of sample sizes required for two statis-

tics to achieve the same power when testing the hypothesis of no contami-

nation at the same significance level against the contamination alternative.

For the statistics to be considered here, PEs are independent of the

particular choices of significance level and power.

4. EFFICACY CURVES FOR EDF STATISTICS

We now define the efficacy curve, EC, as EC = aIC 2 where "a" is

the constant in Condition II. The difficulties noted when comparing ICs

for test statistics have now been overcome. The EC is invariant with

respect to linear functions of a test statistic whereas the IC is not.

Also through "a" the EC takes into account the fact that different sta-

tistics may have limiting distributions of different forms when the null

hypothesis is true. For D, V, W*, U*, and A* the constant "a" has the

2 2value 4, 4, r , 41 , and 2, respectively. The ECs for these statistics are:
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1. ECD (c) = {2F(c) - II + 2

2. ECV (c) -- 4I 22 1
3. ECw. (c) = Ir 2F 2(c) - F(c) + -}

3

2
4. EC. (c) =

5. ECAA (c) = - 2 Zn[F(c){1 - F(c)}] -2.

Graphs of these curves are shown in Figure 1. Their shapes reveal

in rather dramatic fashion the asymptotic sensitivity of each statistic

to departures from the assumed distribution at the point F(c) as it

varies in the interval. The ECs for V and U* are seen to be constants.

This is not surprising considering that both statistics were orginally

proposed as tests for uniformity on the circle and share the property

that they are invariant with respect to the choice of origin. The EC

for A* is unbounded and illustrates the well-known sensitivity of A2 to

perturbations in the tails of the assumed distribution. The statistics

D and W* can also be seen to be more sensitive towards the tails of the

distribution.

There are some surprising results when the relative heights of

these ECs are examined. For example V dominates all other statistics

except A*, and D and U* both dominate W*. To see just how accurate

this representation is for finite samples, m = 10,000 samples were

generated independently for samples of size n = 20, 40, and 80 with 11

choices for the point of contamination F(c) = .00(.05).50. The uniform

distribution was then contaminated with probability c - .10. The
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Figure 1. Efficacy curves for EDF statistics.
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empirical powers were determined based on a .05-level test and an

empirical power curve (EPC) was plotted for each statistic. Values of

c > .5 were plotted using symmetry considerations. The EPCs for n = 20,

40, and 80 were computed; that for n = 40 is shown in Figure 2.

The overall appearances of the EPCs in Figure 2 are remarkably

similiar to the ECs in Figure 1, both in individual shape and in

relative position to one another. And it should be recalled that while

relative heights of EPCs have a relative power interpretation, those for

ECs have a relative sample size interpretation. Since there is a mono-

tonic relationship between power and efficiency, we still expect the

order of finish to be about the same for large samples. This is seen

to be true in the center of the distribution, but not strictly true in

the tails. When averaged over the 11 values of c, the EPC for V is

significantly greater than that for U for all three sample sizes

investigated and the observed significance level, p, decreases as n

increases (p ; .04, .001, < .0005). This is in accordance with a PE of

1.216. One is struck by the fact that in no other case does one appear

to dominate another, and that the order of finish in the tails is the

reverse of that in the center of the distribution.

While the relative heights of ECs have some meaning, caution should

be exercised when extrapolating to finite samples. The discrepancies

noted between ECs and EPCs reflect the limitation of an asymptotic

measure when attempting to describe small sample behavior. Regardless

of this limitation, the notion of the EC provides an excellent method for

determining meaningful scale factors when presenting and comparing ICs

for test statistics. The visual inspection of ECs should be useful both
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in identifying statistics that are similar in performance against a

variety of continuous altervatives and in predicting what this performance

will be.

5. EXTENSIONS TO COMPOSITE HYPOTHESES

The above development can be extended to the case of a composite

null hypothesis. Such a case conmonly arises when distribution param-

eters are not specified in advance. Many statistics have been modified

for testing a composite hypothesis by replacing nuisance parameters by

efficient estimates. In other cases, goodness-of-fit statistics have

been formulated specifically for testing certain families of distributions.

The null distributions of EDF statistics modified for testing com-

posite hypotheses are complicated. Stephens (1976) gives some results

2 2 2for W , U , and A when testing for normality and exponentiality. The

constant "a" in Condition II has not been determined for any of these

statistics and verification of Condition III* appears difficult. For the

case of normality, Michael (1977) studies EDF statistics, the standardized

third sample moment vi the standardized fourth sample moment b2, and

statistics proposed by D'Agostino (1971) and van der Watt (1969).

Although ICs are derived for W, U, ' and b only those for and b

can as yet be related to PE. Details for YS. and b are now given.
1 2

Denoting the sample values by xl, x2 , ..., xn , the standardized

third and fourth sample moments can be written as

(xi - x) 3  f (x - x) 3dFn
1 1 3 " 3

ns s

and
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I X (ix 4  f (x ~4 dF
2 4 4

ns s

where

- xi
x = f xdF(X)

and

s2. (x- X)2
n f ( x- )2 dn(x)

Without loss of generality we will let F represent the standard normal

CDF contaminated at the point c. Replacing F with F in the above

expressions the ICs are found to be:

3
IC (c) = c - 3c

and

4 62+3.
ICb (c) = c -6c +3

2

If the parent distribution is the standard normal, then it is well

known that 4I and r'nb have asymptotic normal distributions with variances
1 2

6 and 24 respectively. For asymptotically normal test statistics the con-

stant "a" in Condition II is simply the reciprocal of the variance

(Bahadur , 1960). Hence the ECs for VS_ and b are given by1 2

EC (c) - (c - 3c) 2/6

1
and

ECb 2 (c) - (c 4 - 6c 2 + 3)2/24
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We can show that the ratio of these two ECs has a PE interpretation

without having to verify Condition III*. Since the test statistics to be

compared are both asymptotically normal, we can take the standard

approach described in Chapter 25 of Kendall & Stuart (1979). The only

additional requirement is that the statistics satisfy certain mild

regularity conditions.

It is interesting to note that the derivative of the Ic for b2 is

proportional to the IC for vii Thus at the two points where the EC

for b attains local maxima, the EC for i achieves local minima. This
21

observation supports the notion that the two statistics are sensitive to

quite different types of departures from normality. This characteristic

is rather dramatically illustrated by graphs of these ECs shown in

Figure 3.

6. COMMIENTS

A. Many statistics cannot be expressed as functionals of F . Yetn

it still may be possible to determine PEs for these statistics when

testing for the contamination alternative. Thus it is unnecessarily

restrictive to tie the definition of the EC to that of the IC. A more

practical definition is EC - a{b'(O)}2 where b'(0) - lim [A{b{€)}].

B. One of the major goals of Hampel (1968) was to find that

estimator in a certain class for which the supremum of the IC is

minimized. A similar approach may be fruitful for goodness-of-fit

statistics using the EC. Of course the optimality criteria would have

to be quite different. We could find that statistic within a suitable

class for which the infimum of the EC is maximized.
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C. The above development suggests an interesting use of the EC for

tests of hypotheses. The EC for a test statistic can be interpreted as

a large-sample measure of robustness of validity with respect to point

contamination. That is, the greater the value of EC (c), the greater the

probability of a Type I error when a small amount of contamination is

present near the point c.

D. In related work Lamibert (1979) defines the influence function for

a test in terms of the instantaneous rate of change of the slope, either

approximate as above or exact, as contamination is introduced at some

fixed alternative distribution. Unlike the EC, which can be viewed as a

measure of the robustness of power under the null hypothesis, Lamibert's

influence function for a test is a measure of the robustness of power

under some alternative hypothesis.

E. A finite sample version of the IC termed the sensitivity curve

is introduced by Tukey (1977). A stylized version in which sample values

are replaced by expected order statistics is discussed by Andrews, Bickel,

Hampel, Huber, Rogers, and Tukey (1972). Michael (1977) constructs

stylized sensitivity curves for ED! statistics for testing a simple hypoth-

esis and finds them very different in appearance from the ECs in Figure 1.

For example, the stylized sensitivity curve for D is flat. Thus in this

case the sensitivity curve is quite misleading.

F. Prescott (1976) introduces the stylized sensitivity surface by

adding two arbitrary points to an idealized sample, and presents contours

of such surfaces for a number of statistics for testing the composite

hypothesis of normality. Michael (1977) introduces similar surfaces based

on the IC by allowing equal amounts of contamination to be introduced at
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two different points, and presents contours of surfaces for many of the

sm statistics. The results of these two approaches are not inconsistent,

in contrast to the case of a simple null hypothesis discussed above in E.
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